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We study steep capillary-gravity waves that form at the interface between two stably
stratified layers of immiscible liquids in a horizontally oscillating vessel. The oscillatory
nature of the external forcing prevents the waves from overturning, and thus enables
the development of steep waves at large forcing. They arise through a supercritical
pitchfork bifurcation, characterized by the square root dependence of the height of
the wave on the excess vibrational Froude number (W , square root of the ratio of
vibrational to gravitational forces). At a critical value Wc, a transition to a linear
variation in W is observed. It is accompanied by sharp qualitative changes in the
harmonic content of the wave shape, so that trochoidal waves characterize the weakly
nonlinear regime, but ‘finger’-like waves form for W � Wc. In this strongly nonlinear
regime, the wavelength is a function of the product of amplitude and frequency of
forcing, whereas for W <Wc, the wavelength exhibits an explicit dependence on the
frequency of forcing that is due to the effect of viscosity. Most significantly, the radius
of curvature of the wave crests decreases monotonically with W to reach the capillary
length for W = Wc, i.e. the lengthscale for which surface tension forces balance grav-
itational forces. For W <Wc, gravitational restoring forces dominate, but for W � Wc,
the wave development is increasingly defined by localized surface tension effects.

1. Introduction
Nonlinear waves in fluids are associated with a rich variety of dynamics that often

underpin important natural phenomena. Examples range from internal solitary-like
waves that are ubiquitous features of coastal oceans (Helfrich & Melville 2006) to
the surface ocean spectra, whose interpretation relies on the nonlinear interaction
between surface water waves and wind (Phillips 1988). Stokes’ early analysis (Stokes
1847) of the shape of gravity waves showed that above infinitesimal amplitudes,
the free-surface wave that results from the balance between inertial and restoring
gravity forces, adopts the shape of a trochoid, with steeper crests and flatter troughs.
This solution, which omits surface tension, converges for all amplitudes less than the
critical value at which the wave-crest curvature becomes infinite (Kraskovskii 1960).
As suggested by Stokes, the included angle of the crest at this critical point is 120◦, and
its longitudinal velocity becomes equal to the phase speed, so that the wave breaks.
When the restoring force is due to surface tension rather than gravity, an exact
nonlinear solution first derived by Crapper (1957), describes progressive capillary
waves of arbitrary amplitudes. Unlike gravity waves, the trough of a capillary wave
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is sharper than its crest (inverted trochoid). Surface tension prevents the trough
curvature from becoming infinite, and for a critical wave height, the free surface just
touches itself and entrains an air bubble at the end of each trough.

The dispersion relation for small-amplitude capillary-gravity waves (linear waves)
indicates that surface tension and gravity are the dominant restoring forces at
large and small wavenumbers, respectively (Craik 1985). However, for finite wave
amplitudes (nonlinear waves), surface tension effects can dominate irrespective of
the wavenumber of the primary wave through mechanisms such as localized surface
tension effects in steep waves and the resonance interaction mechanism (RIM).
In steep waves where the curvature distribution is highly non-uniform, surface
tension forces, which tend to limit the curvature to finite values, can act locally
to produce features such as increased wave height (Taylor 1953) and ripple formation
on progressive water waves (Cox 1958). Taylor’s observation of wave heights larger
than those predicted for standing gravity waves was shown to be due to surface
tension effects by Schultz et al. (1998), as surface tension prevents a curvature
singularity at the crest of the wave when its height reaches and then exceeds the
gravity wave limit. By performing a stability analysis of progressive gravity waves
near their maximum amplitude, Longuet-Higgins (1963) showed that the localization
of surface tension effects near the wave crests produces a train of ripples on the
forward face of the wave that is sustained by drawing energy from the gravity wave.
However, surface tension can also exercise considerable influence at small to moderate
wave steepness by altering the resonance conditions through nonlinear interactions
between different wave modes, as exemplified by Wilton’s ripples (McGoldrick 1970b).
Moreover, localized surface tension effects and resonant interaction mechanisms can
act together to produce features such as the Wilton ‘dimple’ observed by Jiang,
Perlin & Schultz (1998) on steep gravity-capillary waves.

In this paper, we investigate the growth to large amplitudes of progressive capillary-
gravity waves that form at the interface between two immiscible liquids through a
Kelvin–Helmholtz (K-H) instability, and interpret the development of the waves in
terms of surface tension effects. We are not aware of any previous studies of surface
tension effects in steep shear-driven waves, as the wave crests generally bend with
the basic stream (Drazin 1970), so that the waves become unstable at moderate
amplitudes. The influence of shear on interfacial waves was addressed by Thorpe
(1978) in two-layer experiments in miscible liquids, where he observed the transition
from narrow (broad) troughs (crests) to markedly broader troughs than crests as the
interfacial shear was reduced. The transition point, however, could not be determined
accurately because of limited wave heights, beyond which a K-H instability occurred
locally near the crests, leading to roll up and eventually to wave breaking and mixing.
In the presence of surface tension between immiscible layers of counter-flowing
liquids, Hou, Lowengrub & Shelley’s (1997) computations have shown that roll-up is
suppressed, allowing the interface to form long ‘fingers’ of one liquid penetrating into
the other. These ‘fingers’ are susceptible to overturning and form spirals for larger
forcing. Hence, previous studies on shear-driven progressive interfacial waves have
been limited to small amplitudes beyond which the waves break or roll-up either due
to local shear instabilities or overturning of crests. Possibly due to this reason, the
study of surface tension effects has been limited to large-amplitude standing waves
(Taylor 1953; Schultz et al. 1998), rather than progressive waves. We prevent the
overturning of crests by driving waves at the interface between immiscible liquids
with oscillatory shear, and thus, we are able to generate large-amplitude progressive
capillary-gravity waves.
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When a rectangular vessel containing two immiscible liquids of different densities in
a stably stratified configuration is oscillated horizontally, the differential acceleration
of the two liquids results in a counterflow that generates oscillatory interfacial shear.
Capillary-gravity waves were first observed above a critical forcing acceleration
by Wolf (1969), and their onset has subsequently been studied experimentally by
Wunenburger et al. (1999), Ivanova, Kozlov & Evesque (2001), González-Viñas &
Salán (1994) and Talib, Jalikop & Juel (2007). They are often referred to as ‘frozen
waves’ (FWs) because they appear motionless in the reference frame of the oscillating
vessel for small enough wave amplitudes. In the reference frame of the laboratory,
however, they can be considered as progressive waves with a time-periodic phase
speed. In the inviscid limit of large frequencies, ω = 2πf , and vanishing amplitudes
of forcing a, Lyubimov & Cherepanov (1987) predicted that the interface between
two liquid layers, each of thickness h, becomes linearly unstable to a sinusoidal
disturbance of dimensionless wavenumber k when the vibrational Froude number,

Ŵ = aω/
√

(gh), where g is the acceleration due to gravity, exceeds a critical value so
that

Ŵ 2 �
1

2
Wγ

(
k

kγ

+
kγ

k

)
tanh k (1.1)

with

Wγ =
(1 + ρ2/ρ1)

3

ρ2/ρ1(1 − ρ2/ρ1)
k−1

γ and kγ =
h

lc
,

where ρi (i =1, 2) is the density of the lower and upper layers, respectively. For
layer heights h >

√
3lc, where lc =

√
γ /((ρ1 − ρ2)g) is the capillary length and γ the

interfacial tension, the critical wavelength is determined by the capillary length,
λc = 2π/kγ . Thus, in the absence of viscosity, the capillary length is the natural
length scale of the instability. The onset relation given by (1.1) is analogous to that
of the classical K-H instability (Chandrasekhar 1981), where the short and long-
wavelength perturbations are suppressed by the restoring effects of surface tension

and gravitational forces, respectively. The Froude number (Ŵ ), which is a square
root measure of vibrational to gravitational forces, is analogous to the dimensionless
velocity difference across the interface in the classical K-H flow. Although both
inviscid (Khenner et al. 1999) and viscous (Talib & Juel 2007) models predict
parametric modes of instability at finite amplitudes and frequencies of forcing, only
the K-H mode (zeroth order parametric mode) occurs for experimentally realizable
parameters, where the ratio of kinematic viscosities N = ν2/ν1 (with the subscripts
1 and 2 referring to the lower and upper layers, respectively), is large and the
interfacial tension is small (Talib et al. 2007; Yoshikawa (2006)). The presence of
viscosity introduces two additional length scales, δi =

√
2νi/ω, (i = 1, 2), which are

widely different when the viscosity ratio N is large. These influence the onset of
the FW by introducing a frequency-dependence of the instability threshold and
critical wavenumber, as shown by Talib et al. (2007) in a combined experimental
and theoretical study. Moreover, they found that the onset values are non-monotonic
functions of N , so that increasing the viscosity ratio may promote instability.

Although the onset of the FW is well understood, the growth of the wave beyond
onset has not been characterized. We are only aware of one study by Ivanova
et al. (2001), which reports a series of wavelength measurements. Related wave
formation at the interface between immiscible liquids of large viscosity contrast
in a cylindrical geometry was investigated by Yoshikawa (2006) and Shyh &
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Munson (1986), who performed wave height measurements suggesting onset through
a supercritical pitchfork bifurcation. In this paper, we present the results of a detailed
experimental investigation into the growth of the FW beyond onset as a function
of the vibrational Froude number. As h/lc = 21.35 is large and our experimental
evidence suggests that the layer height has a negligible effect on the wave growth,
we choose lc as the characteristic length scale of the instability and define a

modified Froude number based on lc, W = Ŵ
√

h/lc. Unlike most large-amplitude
progressive waves, the wave in our experiments is symmetric about the vertical line
passing through its crest at the mean position of the vessel (see figure 2). Thus, the wave
shape at this location can be decomposed into a small number of Fourier components.
Significant viscous dissipation in the upper layer liquid prevents the interfacial wave
from developing instabilities through RIM, as suggested by McGoldrick (1970b).
Hence, the growth of the FW enables the study of steep progressive capillary-gravity
waves driven by shear. Note that sloshing is another mechanism of interfacial wave
formation in horizontally oscillating fluid-filled tanks that is distinct from the FW.
Strongly nonlinear waves may form when resonant conditions between the forcing
and natural sloshing frequencies are approached (La Rocca, Sciortino & Boniforti
2002), but in our geometry, these correspond to frequencies much smaller than those
investigated in this paper.

The experimental apparatus, flow visualization and curvature measurement tech-
niques are described in § 2. In § 3.1, we present bifurcation diagrams for the onset
of the FW and show that the instability occurs through a supercritical pitchfork
bifurcation. The qualitative change in the wave growth that occurs beyond a critical
forcing (Wc) is discussed in § 3.2. The associated wave shape evolution is described and
quantified in § 3.3, and a transition from a weakly to a strongly nonlinear regime is
identified to occur at Wc. In § 3.4, the wavelengths in the strongly nonlinear regime are
shown to depend on the forcing velocity (aω) alone, whereas in the weakly nonlinear
regime, an explicit dependence on the forcing frequency highlights the influence of
viscosity. The effect of the contact line at the lateral walls of the vessel on the growth
of the interfacial wave is addressed in § 3.5. In § 4, the transition between the two
regimes is interpreted in terms of localized surface tension effects, and the effect of
oscillation on wave growth and breaking is discussed. Finally, a summary of the
results in given in § 5.

2. Experimental set-up
The apparatus used to drive the flow is similar to that described in Talib et al.

(2007). However, a new visualization set-up has been developed to enable the accurate
observation of the shape of the interfacial wave by illuminating a thin slice of the
interface using a sheet of laser light. Hence, we only highlight the salient features of
the vibration rig, but discuss the visualization system and the measurement techniques
in detail in § 2.1 and § 2.2, respectively.

A schematic diagram of the experimental apparatus is shown in figure 1(a). A
rectangular Perspex box of inner dimensions 170 mm × 75 mm × 40 mm and 4 mm
thick walls was filled with equal amounts of two immiscible liquids. A Perspex lid was
fitted on top and care was taken to expel any air bubbles left inside the vessel. The
box was mounted rigidly on a linear, horizontal air-bearing slide (Nelson Air), which
was driven by a permanent-magnet shaker (LDS, V450). The harmonic content of
the motion of the slide was less than 0.1 % over the range of frequencies used in our
investigation. The signal provided by the waveform generator (Agilent, 33440A) had
a maximum error of ±0.05 Hz. Using feedback from a linearly variable differential
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Lower layer ν1 (m2 s−1) ρ1 (kg m−3)

Galden HT135 1.12 × 10−6 1752

Upper layer ν2 (m2 s−1) ρ2 (kg m−3)

Silicone oil (100 cS) 1.14 × 10−4 961
Silicone oil (200 cS) 2.10 × 10−4 962

Table 1. Physical properties of the liquids used in the experiments. The surface tension
coefficients between HT135 and the silicone oils were measured using a Du Nouy ring, and
found to be equal for both silicone oils with a value of γ = 6.8 × 10−3 N m−1.
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Figure 1. (a) Schematic diagram of the front view of the experimental set-up. (b) End view
of the laser visualization set-up.

transducer (LVDT, Solatron, Mach 1), we could maintain the forcing amplitudes to
within 0.1 % of the set value. The external forcing was varied via two control paramet-
ers: the frequency and the amplitude of oscillation. The experiments were performed
by fixing one of these quantities and varying the other. It was found experimentally
that a settling time between parameter increments of approximately 30 s (i.e. between
600 and 900 oscillations) was sufficient to ensure the decay of transients.

The two immiscible liquids that we used in our experiments were Galden HT135
(a perfluoropolyether from Solvay Solexis) and silicone oil (polydimethylsiloxanes
from Basildon Chemicals Ltd.). Two different silicone oils of kinematic viscosities of
approximately 100 cS and 200 cS were used. The physical properties of the liquids
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are listed in table 1. They were measured in the laboratory at a temperature of
21◦C ± 1◦C, at which all the experiments were conducted. The fluids were chosen
for their large density difference and low interfacial tension, in order to enable us to
reach large-amplitude interfacial waves within the available power of the shaker. The
maximum frequency for which waves of sufficient amplitude could be reached was
f = 30 Hz. The waves we observed in the experiments did not depend measurably on
the transverse direction, and thus they were two-dimensional modes.

2.1. Interface illumination

The visualization of the interface was performed in the central part of the vessel
in order to eliminate aberrations caused by the meniscus at the lateral walls. The
line of contact between the fluid interface and the walls of the vessel was found to
have a negligible effect on the wave dynamics as discussed in detail in § 3.5. A laser
sheet was shone in the vertical centre plane parallel to the direction of oscillations
in order to illuminate a narrow slice of the interface. The contrast between the two
fluid layers was maximized by dyeing the silicone oil with a fluorescent dye that is
commercially available under the trade name Fluoro-Chek (Corrosion Consultants
Div., USA). It fluoresces in the green and is commonly used for leak detection in
automobile engines. This method resulted in a clean sharp interface. Moreover, the
critical forcing parameters at the onset of the FW instability were found to be similar
to within experimental resolution with and without the fluorescent dye present in the
silicone oil, thus suggesting that the effect of the dye on the physical properties of the
liquids was negligible.

A schematic diagram of the visualization set-up is shown in figure 1(b). The
vertical laser sheet was produced by deflecting the horizontal light sheet from a
pulsed Nd:YAG laser by 90◦ using a slab of crown glass mirror positioned beneath
the Perspex vessel. The camera was a Pulnix TM-6740, which has a resolution of
640 × 480 pixels. It was interfaced to a personal computer through a National
Instruments (NI) PCI-1428 image capture card, and the NI Vision software was used
to capture images. Both the camera and the laser were synchronized to the oscillations
using a synchronizing digital pulse Transistor-Transistor Logic (TTL) from the wave-
form generator, in order to enable the stroboscopic capture of images. The TTL
signal was modulated in phase before it reached the camera and the laser, so that the
wave shape at different phases of the oscillations could be studied (see figure 2). The
camera was positioned at a distance of approximately 300 mm from the vertical laser
sheet with a positive inclination of approximately 7◦ to the horizontal such that the
line of sight ran through the transparent bottom liquid (figure 1b). In this way, the
optical effects associated with the contact line were avoided entirely. This very small
angle of inclination was chosen in order to minimize the magnification of the image
caused by light refraction. The small residual effect of refraction was compensated
for by calibrating the images in the plane of focus, which was displaced slightly from
the illumination plane.

2.2. Measurement techniques

The growth of the FWs is accompanied by oscillations of the crests and troughs
in the reference frame of the vessel. This means that in general, the waves are
asymmetric about a vertical axis passing through their crests or troughs, except when
the vessel is in its mean position (see figure 2). All of the measurements of the wave
properties reported in this paper were taken at this mean position, where the waves
are symmetric. For each set of forcing parameters, the wavelength and wave height
were obtained by averaging the values of these quantities measured over three to
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Figure 2. An illustration of the interface shape at the different phases of the oscillation cycle
labelled on the schematic diagram of the vessel position. These pictures were captured with
200 cS silicone oil in the upper layer. The waves in picture (e) can be approximately recovered
by reflecting the waves in picture (a) about vertical lines passing through their crests or troughs,
and similarly for the waves in pictures (b) and (d ). The discussion of the interfacial wave in
this paper is based on images of the vessel in its mean position, but the height and wavelength
of the primary wave component remain similar to within experimental accuracy throughout
the oscillation cycle.

five waves in ten successive images. The interface shape was very steady at a given
phase of the oscillation cycle, so that the errors in wavelength measurements were
within ±0.5 %. The accuracy of the wave height measurements was limited by the
resolution of the images, of approximately 30 pixels per millimetre. Thus, increasing
uncertainties were unavoidable as the wave height decreased to infinitesimal values
near onset, and the error on the smallest wave heights reported is up to ±12 %.

The curvatures of the wave crests and troughs were measured by fitting second-
order polynomials to the outline of the wave crests and troughs using a least squares
method, and calculating the maximum curvature of the fitted curves. Part of the
wave near a crest or a trough was chosen for curvature measurements such that
it lied within a square box of side equal to the capillary length (see § 4.1), which
corresponded to approximately 30 pixels in the digital images. The errors in these
measurements were less than 4% if the width of the box was between 20 and 40
pixels. This method was validated by comparing the curvature values obtained at
f =30 Hz to the corresponding values obtained by fitting a truncated Fourier series
(defined in (3.1)) to the wave shape, and the values were found to be similar.

The included angles of the wave crests (θ) were measured by drawing tangents on
either sides of the crests such that the lines passed through their respective troughs,
and measuring the angle between the two lines. The lines were drawn by hand, and
the process was repeated three times for each image. The included angle measurement
was taken to be the average of these three data points.

3. Interfacial wave growth
3.1. Bifurcation diagram

Bifurcation diagrams of the onset of the two-dimensional FWs are shown in
figure 3(a), where the trough-to-crest height of the waves ξ ∗ is plotted as a function
of the amplitude of forcing, a. The measurements were made for forcing frequencies
of f = 20 Hz, 25 Hz and 30 Hz (see § 2 for the frequency range available), with 200
cS silicone oil in the upper layer. Similar bifurcation diagrams were obtained by
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Figure 3. Bifurcation diagrams for different forcing frequencies of f = 20 Hz (∗), f =25Hz
(�) and f =30Hz (�), with 200 cS silicone oil in the upper layer. The wave height, ξ ∗, is
plotted against the forcing amplitude a in (a). The labels on the bifurcation diagram refer to

the pictures of the interface in figure 6. Plots of ξ ∗2 versus a for data points below the dashed
line in (a) are plotted in (b). Straight line fits are shown as solid lines.

varying f as the bifurcation parameter while a remained fixed. In figure 3(a), the
dependence of ξ ∗ on a undergoes a qualitative change beyond a threshold height
of the wave (ξ ∗

c ), which is indicated by the horizontal dashed line in figure 3(a).

For each value of the forcing frequency, the square of the heights (ξ ∗2) below the
horizontal dashed line depends linearly on a, as indicated by the linear least square
fits plotted in solid lines in figure 3(b). Thus close to the point of onset of the FW,
ao, its height grows as

√
a − ao. Furthermore, the same critical point (ao) is reached

either by increasing or decreasing the forcing amplitude, indicating that there is no
hysteresis at onset. These observations are consistent with a supercritical pitchfork
bifurcation. The translational symmetry along the horizontal direction is broken for a
critical value of the forcing by the deformation of the interface into waves (figure 6a).
Note that we do not distinguish between different asymmetric states, and thus the
symmetry-breaking bifurcation diagram includes only one branch.

The growth of the interfacial wave beyond ξ ∗
c is characterized by a linear variation

of ξ ∗ on a, and its slope increases with the forcing frequency (see figure 3a). The
sudden qualitative change in the dependence of the wave height on the forcing
parameters, when the wave height reaches ξ ∗

c , suggests the existence of a transition
from a weakly nonlinear to a strongly nonlinear state. We investigate the physical
origin of this transition in § 4.

3.2. Dependence of the wave height on W

The wave height, non-dimensionalized by the capillary length (ξ = ξ ∗/lc), is plotted
against the vibrational Froude number (W = (aω)/

√
glc) in figure 4(a). The bifurcation

diagram is divided into two regions (I and II), to highlight the square root and the
linear variations of ξ with W . In region I, ξ 2 varies linearly with W as shown in
figure 4(b). However, the slopes of the linear fits to the data differ considerably,
implying that the wave growth in region I is dependent on f or a individually, rather
than on the product (af ). This is an effect of viscosity that is discussed in further
detail in § 3.4. By contrast in region II, the four curves collapse onto a straight line to
within experimental uncertainty suggesting a dependence on (af ) only.
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f (Hz) 18.9 20 25 30
a (mm) 3.500 3.216 2.625 2.160

Wc 4.359 4.215 4.301 4.247

Table 2. Values of Wc obtained for different experimental parameters from data of figure 4.
In the first column, a was fixed and the forcing frequency (f ) was varied, so the intersection
point of the square root and linear fits gives a critical value of f . The experiments reported in
the following columns were for fixed frequencies, so that a was varied.
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Figure 4. (a) Wave height (ξ ) versus W for different fixed parameters; f = 20 Hz (∗), f = 25 Hz
(�), f =30Hz (�) and a = 3.5 mm (�), with 200 cS silicone oil in the upper layer. Regions I
and II are demarcated by the vertical dashed line at Wc = 4.2807. In region II, all the data
points collapse onto a straight line with an average slope of 1.938 ± 0.068. The average linear
fit and the square root fit for f = 30 Hz are shown with solid lines. (b) Square of the wave
height (ξ 2) versus W in region I for different fixed parameters. The linear fits to each data set
are shown with solid lines.

For each set of data, a critical value of the Froude number Wc was determined
to be the intersection point of the square root and linear fits in regions I and II,
respectively. Close to Wc, the weighted norm of the residues for the square root fit
increased sharply, so that points included in the square root fit were those up to the
value of W beyond which an order of magnitude jump in this quantity was observed.
The rest of the points were included in the straight line fit in region II. The average
slope of the straight line fits in region II is 1.938 ± 0.068, which is constant to within
±3.5 %. Despite the different square root fits in region I (figure 4b), the values of
Wc tabulated in table 2 differ by only 1.4 % with an average of 4.281, which can
be considered constant to within experimental accuracy. Hence, the data collapse for
W � Wc.

A comparison between the bifurcation diagrams measured with 100 cS and 200 cS
silicone oils is shown in figure 5. With 100 cS silicone oil, Wc =4.379 ± 0.006. This
value is only 2.28 % larger than the result obtained with 200 cS sillicone oil, compared
with the 14 % difference between the forcing values at the onset of the FWs, Wo.
Moreover, the critical heights of the waves (ξc = ξ ∗

c / lc) are approximately equal in
both cases. This is not an effect of the finite thickness of the fluid layers, as even
the tallest wave heights are less than 15 % of the layer thickness. The fact that the
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Figure 5. Comparison between wave heights when the upper layer liquids are 200 cS and
100 cS silicone oils. The values of Wc , highlighted by dashed and dotted vertical lines,
respectively, are very close. The data taken with 100 cS silicone oil was for forcing frequencies
of f = 20 Hz (·), f = 25 Hz (×) and f =30Hz (�). The square root fits for f = 30 Hz and
average linear fits for different fixed amplitudes and frequencies of forcing for each liquid are
shown with solid lines.

wave heights in region II vary linearly with different slopes, however, suggests that
the dependence on the viscosity ratio (N) is sustained beyond Wc.

3.3. Description of wave shape evolution

In figure 6, we present a set of six pictures of the interface that illustrate the evolution
of the interfacial wave shape with forcing amplitude for f = 30 Hz and 200 cS silicone
oil. These pictures correspond to the points marked with letters on the bifurcation
diagram in figure 3(a). The pictures in the left hand-side column of figure 6 are
for Wo < W < Wc, while the right hand-side column is for W > Wc. The interface
undergoes successive qualitative changes as W is increased. The sinusoidal shape of
the interface in figure 6(a) evolves to resemble an inverted trochoid in figure 6(c). As
W is increased beyond Wc, it deforms further to assume a ‘finger’-like crest as shown
in figures 6(e) and 6(f ).

The excellent agreement between linear theory and the experiments of Talib et al.
(2007) suggests that the interfacial wave is sinusoidal at the onset of the FW instability,
although very close to onset, the waves have vanishingly small heights, so that
their shape cannot be resolved experimentally. The curvatures of the crests and
troughs of the wave are equal at onset, but as the wave grows, the trough curvature
increases more steeply than the crest in the region Wo <W � Wc. Hence we see
sharper troughs than crests in figure 6(a–c). In these three pictures, the curvatures
of the crests (troughs), non-dimensionalized by the capillary length, are (a) 0.2 (0.23),
(b) 0.62 (1.07), (c) 0.95 (1.91), respectively. The differences in curvature of the crests
and troughs are accentuated as the forcing frequency is decreased, and we refer to
§ 4.1 for more detailed curvature measurements.
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Figure 6. Evolution of the interfacial wave shape at f = 30 Hz and with 200 cS silicone
oil for the increasing amplitudes of forcing highlighted in figure 3. (a) The interface shape
at W = 3.14 is close to sinusoidal. In (b) W = 3.51 and (c) W = 3.93, the interface adopts an
inverted-trochoid shape. In (d ) (W =4.71), the trough starts to broaden, while in (e) (W =5.68)
and (f ) (W = 6.10), the crest has developed a ‘finger’-like shape. The white bars in the lower
left corner of each image correspond to the capillary length scale (lc).

When the height of the wave reaches ξc (at Wc), the shape of the wave changes
qualitatively. The curvature of the trough starts to decrease, while the crest curvature
continues to increase (see figure 12a) but at a lower rate. Hence for W >Wc, the
trough broadens but its depth continues to increase analogously to the wave height.
This results in the deformation of the crest to a ‘finger’-like shape that accommodates
the broadening as well as the deepening of the trough (figure 6f ). The physical origin
of these changes will be discussed in § 4.

The nonlinear evolution of the interfacial wave is quantified by analysing the
harmonic content of the wave shape. Using a least squares method, we fit the
truncated Fourier series,

y = A0 cos(kx) + A1 cos(2kx) + A2 cos(3kx), (3.1)

to the interfacial wave shape extracted from the experimental images, and determine
the magnitudes of the fundamental (A0), first (A1) and second (A2) harmonic terms. x

and y are the horizontal and vertical coordinates, respectively, k is the wavenumber
measured in the experiments, and these quantities are non-dimensionalized with the
capillary length. The first three terms of the Fourier expansion are sufficient to
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Figure 7. Variation of the amplitudes A0, A1 and A2 from (3.1) with W . The experiments
were performed by varying a for f = 30 Hz, with 200 cS silicone oil in the upper layer. The
dashed vertical lines highlight the value of Wc .

describe the trochoid shape and the ‘fingering’ of the crest, and thus, we have not
included higher order terms in (3.1). Moreover, the magnitude of the fourth term in
the series is less than 0.01, which is approximately an order less than those of the
second and third terms.

In figure 7, we plot the variation of A0, A1 and A2 for f =30 Hz with 200 cS
silicone oil in the upper layer. The fundamental mode is approximately an order of
magnitude larger than the first harmonic, and hence it exhibits a similar variation
with a as the trough-to-crest height (ξ ) plotted in figure 4(a). The first harmonic
affects the curvatures of crests and troughs in opposite ways. The negative values
taken by A1 for W � Wc imply that the first harmonic acts to increase the curvature
of the troughs and decrease the curvature of the crests. The decrease in A1 towards
its minimum value at approximately Wc results in the inverted trochoid profile of the
interface seen in figure 6(c). The second harmonic, however, affects both curvatures
in a similar way. A2 is approximately equal to zero for W � Wc and drops to
negative values immediately beyond Wc, so that it acts to moderate the curvatures
of both the crests and troughs. The cumulative contributions of both the first and
second harmonics lead to the narrowing of the crest into a ‘finger’. Examples of
the inverted trochoid shape and the ‘finger’-shaped crest are shown in figure 8,
where the outlines of these two interfacial waves, plotted with dashed lines, are
superposed onto sine waves of the corresponding wavenumber k and wave height
2(A0 + A1 + A2). The qualitative changes in the harmonic content of the wave at Wc
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(a) (b)

Figure 8. Experimental wave shapes, with 200 cS silicone oil in the upper layer, that deviate
from the sinusoidal form are plotted with a dashed line. The solid lines give the sinusoidal
wave form with a wavelength and wave amplitude taken from the experiments. (a) A typical
wave from region I, with broader crests and narrower troughs (inverted trochoid). (b) The
‘finger’ like shape of the wave crest seen in region II.
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Figure 9. Plot of the non-dimensional wavelength (λ) versus W for the same parameters as
in figure 4. The dotted arrow indicates that the onset wavelengths decrease with increase in
forcing frequency (f ). In region II, the wavelengths collapse and increase steeply with W . The
wavelengths in regions IIa and IIb increase at different rates. The solid line is the linear fit for
the wavelength data corresponding to f = 30 Hz in region IIa .

further support the existence of a transition from a weakly nonlinear state to a strongly
nonlinear state.

3.4. Dependence of the wavelength on W

The variation of the non-dimensional wavelength (λ= λ∗/lc) with W for 200 cS
silicone oil is shown in figure 9. The wavelength successively decreases and increases
for W < Wc and W >Wc, respectively, thus reaching a minimum at W =Wc. Similarly
to the wave height variation, the wavelengths collapse onto a master curve for W � Wc.
For W <Wc, however, the wavelength decreases with increasing forcing frequency, as
highlighted by the dotted arrow.
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Figure 10. The steepness (S = ξ ∗/λ∗) of the two-dimensional waves versus the forcing W as
the wave approaches the onset of three-dimensional waves for f = 30 Hz and 200 cS silicone
oil. For larger forcing, S ∼ O(1), which implies that ξ ∗ ∼ λ∗.

By fitting a power law to the experimental data of Talib et al. (2007), we obtain
a functional dependence of the critical wavelength of primary instability on f for
N = 187, which shows that at onset λ∗ ∝ f −0.31. For f = 30 Hz, the thickness of the
Stokes layers are δ2 = 0.4λ∗, and δ1 = 0.03λ∗ at the onset of the FWs. The fact that
these length scales, and particularly δ2, are close to the value of λ∗ suggests that
viscous effects have a strong influence on the wavelength selection. If δ2 is used to
non-dimensionalize the wavelength instead of lc, then λ= λ∗/δ2 = λ∗√

π/ν2f
1/2. This

indicates λ∗ ∝ f −0.5, and hence suggests a frequency dependence of wavelength due
to viscous effects in the upper layer. However, since this power of f is not close
to the experimentally observed power of − 0.31 at onset, other factors such as the
viscous effects in the lower layer are likely to influence the wavelength dependence
on f .

In region II, we find that the wavelength is a function of the product of amplitude
and frequency of forcing, but looses its explicit dependence on f . This suggests that
viscous stresses in the Stokes layers do not influence the shape of the interfacial wave
in this region. We expect the surface tension forces to have a more significant effect
on the wavelength in this region since the radius of curvature associated with local
features of the shape of the nonlinear interfacial waves become comparable to lc, as
discussed in § 4.

The variation of the wavelength and wave height with the magnitude of forcing in
this region may be inferred by balancing inertial and gravitational forces, as inertial
forces induce suction at the crests and troughs that tends to deform the interface,
while gravitational forces act to restore a flat interface. For larger magnitudes of
forcing, e.g. in region II, the wave steepness, defined as the ratio of the wave height to
wavelength (S = ξ/λ= ξ ∗/λ∗), tends towards one (figure 10). Hence, the wave height
and wavelength are of the same order (ξ ∗ ∼ λ∗). The balance of forces for a wave of
dimensional wavelength λ∗ can be expressed as ρ1+ρ2

2
(aω)2(ξ ∗/λ∗)λ∗ ∼ (ρ1 − ρ2)gξ ∗λ∗,
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Figure 11. Wavelength versus W for experiments performed with 200 cS and 100 cS silicone
oil in the upper layer. The data points from the 100 cS silicone oil experiments are for forcing
frequencies of f =20Hz (×), and f = 30 Hz (�). The data points from the 200 cS silicone
oil experiments are for f = 30 Hz (�). The values of Wc for 100 cS and 200 cS silicone oil
experiments are indicated by dotted and dashed vertical lines, respectively.

which yields

λ∗

lc
∼ ξ ∗

lc
∼ W 2

	ρ
,

where 	ρ = 2(ρ1 − ρ2)/(ρ1 + ρ2). This relation suggests that the wavelength and wave
height vary as the square of the vibrational Froude number in region II. However,
we find that the linear fits in W and W 2 are of similar precision because of the
limited range of W where steep waves are observed. The maximum value of W in
this regime is set by the onset of three-dimensional instability (see § 4.2). Hence, we
cannot conclusively establish the functional dependence of wavelength on the forcing
parameter, and have chosen to show the lowest order fit for the wave height and
wavelength plots in figures 4 and 9, respectively. Note that the equally good fits for
λ versus W and W 2 data sets is not a result of simply considering a higher order
polynomial, because we do not include the W term while fitting the data for W 2.
However, surface tension forces are of the same order as gravitational forces in this
regime, so that they contribute to define the wave shape locally and may alter the
relationship between wave properties and vibrational Froude number.

The influence of the other viscosity parameter N is more involved, as indicated by
the non-monotonic variation of the onset wavelengths with N (Talib et al. 2007). A
comparison between wavelengths measured in experiments with 100 cS and 200 cS
silicone oil are shown in figure 11. Similarly to the wave height comparison shown in
figure 5, the wavelengths for these two different viscosity ratios differ considerably in
region I. In region II, the influence of N is still noticeable, although the wavelengths
for both values of the viscosity ratio only exhibit small differences, similarly to the
wave heights. Hence, in region II, N may act on the wave by influencing the average
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velocity difference between the layers, but does not impact the wave shape, which is
primarily determined by surface tension effects as discussed in § 4.

Finally, a more detailed examination of figure 9 reveals that region II can itself be
divided into two regions, IIa and IIb. The steep growth of the wavelength in region
IIa is followed by saturation in region IIb, which is linked to the deformed contact
lines observed for large W (see § 4.2). This behaviour is consistent with the results of
Ivanova et al. (2001), who report a ‘jump’ in the wavelength variation with forcing
frequency when the constant forcing amplitude is relatively small.

3.5. Effect of the contact line on the wave growth

Talib et al. (2007) have shown that the line of contact between the liquid interface and
the lateral walls of the container has a negligible effect on the onset of the instability
in the experiments. The contact line exhibits slip-stick motion, such that it remains
at rest for small deformations of the interface, and starts to move above a critical
deformation (Dussan 1979). As the interfacial wave grows, the deformation of the
interface caused by the oscillating crests within a cycle of external forcing always
remains below the critical value required to make the contact line slip. Hence, for any
fixed set of parameter values, the contact line does not deform within the oscillation
cycle. Slip, however, may occur during the transient evolution associated with changes
of parameter values, resulting in a wavy contact line. A deformed contact line is not
observed until values of W in region II, and thus it does not affect the value of
Wc. Furthermore, when the forcing was increased from the onset of the primary
instability to the maximum value shown in figure 9, and then reduced back to a value
for which the interface is flat, we found similar variations of λ with W , with only
slight differences in wavelengths in the region of steepest variation beyond Wc, for all
the fixed values of amplitude or frequency investigated. As advancing contact angles
(when increasing the forcing) are generally different from receding contact angles
(when decreasing the forcing) (Dussan 1979), any effect of the contact line is expected
to contribute to hysteresis in the wavelength diagram. The small changes observed in
the wavelength plot suggest that the effect of the contact line on the dynamics of the
interface is minimal.

4. Surface tension effects
4.1. Curvature measurements

In figure 12(a), the dimensionless radius of curvature of the crest (rκ = r∗
κ / lc) is

plotted as a function of W for different forcing frequencies. The horizontal solid line
highlights the value of the capillary length. rκ decreases rapidly in region I and reaches
the capillary length at approximately Wc. On this length scale, both gravity and surface
tension restoring forces are of similar magnitude and thus contribute equally to shape
the interface. In region I where rκ 	 1, the wave is gravity-dominated, whereas in
region IIa surface tension has a stronger effect on the wave shape relative to region I
since rκ ∼ 1, and even slightly larger than the gravitational force as rκ � 1. In broad
terms, the gravitational force acts to reduce the volume of fluid displaced by the
formation of the interfacial wave, which is proportional to the wavelength, resulting
in the decrease of wavelengths in region I. The surface tension force acts to reduce
curvature, and thus promotes an increase in the wavelength in region IIa .

The increased influence of surface tension forces in region IIa is also apparent in the
dimensionless curvature plots shown in figure 13(a) for f = 30 Hz and 200 cS silicone
oil, where the curvatures of the troughs decrease for W >Wc. However, both crest
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Figure 12. (a) Radius of curvature values of the crest (rκ ) for f = 20 Hz (∗), f =25Hz (�)
and f = 30 Hz (�) versus W for the 200 cS silicone oil experiments. rκ ∼ 1 very close to Wc for
the different curves. (b) Similarly, for 100 cS silicone oil experiments, the radius of curvature
values for the trough (rκ ) intersects the value of the capillary length of 1 close to Wc for
f = 20 Hz (×), f =25Hz (·) and f = 30 Hz (�).
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Figure 13. (a) The curvatures of the crests and troughs, (κ = κ∗lc), increase at different rates.
For W � Wc , the curvature of the trough (�) decreases while that of the crest (�) continues to
increase but at a slower rate. (b) Included angle of the interfacial wave (θ ) in degrees, versus
W for f = 20 Hz (∗), f =25Hz (�) and f = 30 Hz (�). The curvature and included angle data
are for 200 cS silicone oil in the upper layer.

and trough curvatures retain values above 1 as W increases. These variations lead to
the formation of ‘finger’-like crests, which have smaller curvatures than the sinusoidal
crests, but are also narrower so that they allow the curvatures of the troughs to
decrease. Note in figure 13(a) that the transition to strongly nonlinear wave does not
occur until the smaller of the two curvatures, i.e. that of the crest for experiments in
200 cS silicone oil, has reached the capillary length. In the experiments with 100 cS
silicone oil, it is the curvature of the trough that is smaller than that of the crest, and
hence reaches the capillary length at W = Wc. In this case, the shape of the wave in
region I is a trochoid by contrast with the inverted trochoid observed in the 200 cS
oil experiments (see figure 8). These findings suggest that the value of the capillary
length plays a crucial role in determining Wc, and that the transition at Wc is only
weakly dependent on the viscosity of the upper layer liquid.
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Figure 14. Image of a wave close to an extreme position of the oscillation cycle whose crest
is overhanging. f = 20 Hz and with 200 cS silicone oil in the upper layer.

Hence, the transition from weak to strong surface tension effect appears to be
determined by the local features of the wave shape. Similar effects have been observed
in steep standing water waves by Schultz et al. (1998). Furthermore, the shape of our
interfacial waves in region I resemble the weakly nonlinear gravity waves described
by McGoldrick (1970a). Note, however, that the gravity waves of McGoldrick have a
trochoid shape, whereas in our experiments, they exhibit either trochoid or inverted-
trochoid shapes, depending on the viscosity of the upper layer. The variation of the
qualitative features of the wave with viscosity ratio indicates that interfacial shear
influences the relative sharpness of the crests and troughs, as suggested by Thorpe
(1978). Reduced interfacial shear in the case of N = 100 means a smaller influence
on the wave-shape, so that the trochoid nature of the gravity-dominated waves is
preserved. The difference in curvature between the crests and troughs decreases with
the increase of the forcing frequency as discussed in § 3.4. Increased shear due to an
increase in f , on the contrary, makes the wave shape more trochoidal, in contrast with
the results of Thorpe (1978). Hence, further investigation is required to understand
the observed change in the wave shape with variation in N .

4.2. Maximum wave heights

The variation of the included angle (θ) with W is plotted in figure 13(b) for 200 cS
silicone oil. We see that the values of θ for all forcing frequencies beyond Wc, are
approximately equal to θ = 60 ± 10◦. When the included angle saturates for W >Wc,
we do not observe wave breaking as in the weakly nonlinear Stokes wave. Instead,
the wave shape evolves from an inverted-trochoid (weakly nonlinear state) to a more
complicated shape with its characteristic ‘finger’-like crest (strongly nonlinear state),
and this enables the wave height to continue to increase, as previously discussed in
§ 3.2 and § 3.3.

When the vessel is displaced from its mean position, the interface shape tends
towards an ‘S’ configuration (see figure 14) that would be unstable to Rayleigh–Taylor
instability under static conditions. However, the wave does not break for the range
of forcing frequencies and amplitudes explored in our study. The largest horizontal
velocity associated on the wavy interface has to exceed the phase speed for that region
to overhang (Holyer 1979), and our observations suggest that this condition is satisfied
before the vessel reaches its maximum displacement. As the vessel decelerates as it
approaches the maximum displacement position, the wave is not subject to unstable
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conditions for sufficient time for the wave to overturn irreversibly. This shows that
the prediction of Meiron & Saffman (1983) of the existence of overhanging waves is
experimentally realizable by employing sinusoidal forcing.

Finally, we find that the wave height continues to increase with W in region II until
the wave becomes unstable to three-dimensional travelling waves, which emanate
from the side walls and propagate towards the centre of the vessel.

5. Conclusion
We have presented an experimental study of the nonlinear growth of capillary-

gravity waves at the interface between two immiscible liquids subject to horizontal
oscillations. They are driven by a K-H instability and arise through a supercritical
pitchfork bifurcation. The sinusoidal forcing prevents the waves from overturning,
thus enabling the study of steep waves. From the Fourier decomposition of our
measured interfaces, we have identified a critical value of the vibrational Froude
number Wc at which the wave undergoes a transformation from a weakly nonlinear
state (|A2| ∼ 0) to a strongly nonlinear state (|A2| 
= 0), where A2 is the amplitude of
the second harmonic component.

This transformation is accompanied by qualitative changes in the variation of the
wave height and wavelength with W . The bifurcation curves undergo a qualitative
change from square root to linear variations with W at Wc. In the weakly nonlinear
regime (region I), the wavelengths decrease at different rates depending on the value
of the fixed experimental parameter, a or f , and reach a minimum at W = Wc. The
wavelength looses its explicit dependence on f for W � Wc, by collapsing onto a
single straight line with a positive slope. This indicates that the waves are influenced
by viscous length scales for W <Wc.

The physical explanation for the qualitative changes that occur at Wc stems from
the observation that the radius of curvature of the crest (or trough in the case of
100 cS silicone oil) r∗

κ becomes equal to the capillary length (lc) at approximately Wc.
This implies that at Wc, surface tension and gravitational forces acting on the wave
crests are of the same magnitude.

As even large-amplitude wave shapes at the mean position of the vessel are
accurately described by a truncated Fourier series of only three significant terms,
a time-averaged analytical description could be envisaged. Numerical calculations,
however, would probably be required to establish the nature of the transition from
weakly to strongly nonlinear waves.
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discussions. This work was funded by an Overseas Research Scholarship (SVJ) and
an EPSRC ‘Advanced Research Fellowship’ (AJ).
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